2008 H2 Mathematics Paper 2 Question 11
The Normal Distribution
Answers
E(Y)=110Var(Y)=576a=3b=−40 Full solutions
(i)
X1+X2X1+X2∼N(2×50,2×82)∼N(100,128) P(X1+X2>120)=0.0385 (3 sf)■ (ii)
X1−X2X1−X2∼N(50−50,82+82)∼N(0,128) P(X1>X2+15)=P(X1−X2>15)=0.0924 (3 sf)■ (iii)
By symmetry,
E(Y)=274+146=110■ Let Y∼N(110,σ2)Z=σX−110∼N(0,1) P(Y<74)P(Z<σ74−110)=0.0668=0.0668 σ120−110σ=−1.5001=23.999 Var(Y)=23.9992=576■ aX+bVar(aX+b)a2Var(X)82a2=Y=Var(Y)=576=576 Since
a>0,a=3■ aX+bE(aX+b)aE(X)+b3(50)+bb=Y=E(Y)=110=110=−40■