2008 H2 Mathematics Paper 1 Question 3

Vectors I: Basics, Dot and Cross Products

Answers

OP=(633){\overrightarrow{OP}=\begin{pmatrix} 6 \\ 3 \\ - 3 \end{pmatrix}}
AOB=87.8{\angle AOB = 87.8^\circ}
Area of parallelogram OAPB=153 units2OAPB \allowbreak {= 15 \sqrt{3} \textrm{ units}^2}

Full solutions

(i)

Since OAPB{OAPB} is a parallelogram, OB=AP{\overrightarrow{OB}=\overrightarrow{AP}}
OP=OA+AP=OA+OB=(143)+(510)=(633)  \begin{align*} \overrightarrow{OP} &= \overrightarrow{OA} + \overrightarrow{AP} \\ &= \overrightarrow{OA} + \overrightarrow{OB} \\ &= \begin{pmatrix} 1 \\ 4 \\ - 3 \end{pmatrix} + \begin{pmatrix} 5 \\ - 1 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 6 \\ 3 \\ - 3 \end{pmatrix} \; \blacksquare \end{align*}

(ii)

Let a,b{\mathbf{a}, \mathbf{b}} and θ{\theta} denote OA,OB{\overrightarrow{OA}, \overrightarrow{OB}} and AOB{\angle AOB} respectively
ab=abcosθ\left|\mathbf{a} \cdot \mathbf{b}\right| = \left| \mathbf{a} \right| \left| \mathbf{b} \right| \cos \theta
(143)(510)=(143)(510)cosθ1=(26)(26)cosθ\begin{align*} \left|\begin{pmatrix} 1 \\ 4 \\ - 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ - 1 \\ 0 \end{pmatrix} \right| &= \left| \begin{pmatrix} 1 \\ 4 \\ - 3 \end{pmatrix} \right| \left| \begin{pmatrix} 5 \\ - 1 \\ 0 \end{pmatrix} \right| \cos \theta \\ \left|1 \right| &= (\sqrt{26}) (\sqrt{26}) \cos \theta \end{align*}
cosθ=1(26)(26)θ=87.8  \begin{align*} \cos \theta &= \frac{1}{(\sqrt{26})(\sqrt{26})} \\ \theta &= 87.8^\circ \; \blacksquare \end{align*}

(iii)

Area of parallelogram OAPB=OA×OB=(143)×(510)=(31521)=9+225+441=675=153 units2  \begin{align*} & \textrm{Area of parallelogram } OAPB \\ &= \left| \overrightarrow{OA} \times \overrightarrow{OB} \right| \\ &= \left|\begin{pmatrix} 1 \\ 4 \\ - 3 \end{pmatrix} \times \begin{pmatrix} 5 \\ - 1 \\ 0 \end{pmatrix}\right| \\ &= \left|\begin{pmatrix} - 3 \\ - 15 \\ - 21 \end{pmatrix} \right| \\ &= \sqrt{9 + 225 + 441} \\ &= \sqrt{675} \\ &= 15 \sqrt{3} \textrm{ units}^2 \; \blacksquare \end{align*}