2014 H2 Mathematics Paper 1 Question 3

Vectors I: Basics, Dot and Cross Products

Answers

Either a{\mathbf{a}} is parallel to b,{\mathbf{b},} or a=0,{\mathbf{a} = \mathbf{0},} or b=0,{\mathbf{b} = \mathbf{0},}
n=13(122){\mathbf{n} = \displaystyle \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ - 2 \end{pmatrix}}
cosθ=23{\cos \theta = \frac{2}{3}}

Full solutions

(i)

  • a{\mathbf{a}} is parallel to b  {\mathbf{b} \; \blacksquare}
  • or a=0  {\mathbf{a} = \mathbf{0} \; \blacksquare}
  • or b=0  {\mathbf{b} = \mathbf{0} \; \blacksquare}

(ii)

By the reasoning from part (i), n{\mathbf{n}} is parallel to i+2j2k{\mathbf{i} + 2 \mathbf{j} - 2 \mathbf{k}}
Since n{\mathbf{n}} is a unit vector, one possible answer is
n=i+2j2ki+2j2k=13(122)  \begin{align*} \mathbf{n} &= \frac{\mathbf{i} + 2 \mathbf{j} - 2 \mathbf{k}}{\left|\mathbf{i} + 2 \mathbf{j} - 2 \mathbf{k}\right|} \\ &= \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ - 2 \end{pmatrix} \; \blacksquare \end{align*}

(iii)

ab=abcosθ\left| \mathbf{a} \cdot \mathbf{b} \right| = \left| \mathbf{a} \right| \left| \mathbf{b} \right| \cos \theta
Let θ{\theta} be the acute angle between i+2j2k{\mathbf{i} + 2 \mathbf{j} - 2 \mathbf{k}} and the z{z}-axis
(122)(001)=(122)(001)cosθcosθ=23  \begin{align*} \left| \begin{pmatrix} 1 \\ 2 \\ - 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right | &= \left|\begin{pmatrix} 1 \\ 2 \\ - 2 \end{pmatrix}\right| \left|\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right| \cos\theta \\ \cos \theta &= \frac{2}{3} \; \blacksquare \end{align*}