2014 H2 Mathematics Paper 1 Question 6
Sigma Notation
Answers
(ai)
Out of syllabus
(aii)
37n−94(4n−1) (bi)
As
n→∞, (n+1)!1→0 so
Sn→1
Hence
∑ur converges
S∞=1 (bii)
un=(n+1)!n Full solutions
(aii)
r=1∑npr=r=1∑n37−31r=1∑n4n=37n−31⋅4−14(4n−1)=37n−94(4n−1)■ (bi)
As
n→∞, (n+1)!1→0 so
Sn=1−(n+1)!1→1
Hence
∑ur converges
■
S∞=1■ (bii)
un=Sn−Sn−1=1−(n+1)!1−(1−n!1)=n!1−(n+1)!1=(n+1)!n+1−(n+1)!1=(n+1)!n■