2014 H2 Mathematics Paper 1 Question 6

Sigma Notation

Answers

(ai)
Out of syllabus
(aii)
73n49(4n1){\frac{7}{3}n - \frac{4}{9}(4^n-1)}
(bi)
As n,{n \to \infty, } 1(n+1)!0{\frac{1}{(n+1)!} \to 0} so Sn1{S_n \to 1}
Hence ur{\sum u_r} converges
S=1{S_\infty = 1}
(bii)
un=n(n+1)!{u_n = \frac{n}{(n+1)!}}

Full solutions

(aii)
r=1npr=r=1n7313r=1n4n=73n134(4n1)41=73n49(4n1)  \begin{align*} & \sum_{r=1}^{n} p_r \\ &= \sum_{r=1}^{n} \frac{7}{3} - \frac{1}{3} \sum_{r=1}^{n} 4^n \\ &= \frac{7}{3}n - \frac{1}{3} \cdot \frac{4(4^n-1)}{4-1} \\ &= \frac{7}{3}n - \frac{4}{9}(4^n-1) \; \blacksquare \end{align*}
(bi)
As n,{n \to \infty, } 1(n+1)!0{\displaystyle \frac{1}{(n+1)!} \to 0} so
Sn=11(n+1)!1S_n = 1- \frac{1}{(n+1)!} \to 1
Hence ur{\sum u_r} converges {\blacksquare}
S=1  S_\infty = 1 \; \blacksquare
(bii)
un=SnSn1=11(n+1)!(11n!)=1n!1(n+1)!=n+1(n+1)!1(n+1)!=n(n+1)!  \begin{align*} u_n &= S_n - S_{n-1} \\ &= 1 - \frac{1}{(n+1)!} - \left( 1 - \frac{1}{n!} \right) \\ &= \frac{1}{n!} - \frac{1}{(n+1)!} \\ &= \frac{n+1}{(n+1)!} - \frac{1}{(n+1)!} \\ &= \frac{n}{(n+1)!} \; \blacksquare \end{align*}