2014 H2 Mathematics Paper 2 Question 3

Arithmetic and Geometric Progressions (APs, GPs)

Answers

(ia)
440 m{440 \textrm{ m}}
(ib)
(4n2+4n) m{(4 n^2 + 4 n) \textrm{ m}}
35{35} stages
8(2n1) m{8 \left( 2^n - 1 \right) \textrm{ m}}
Travelling away from O{O}
1816 m from O{O}

Full solutions

(ia)
The distances form an AP with first term 8{8} and common difference 8{8}
S10=n2(2a+(n1)d)=102(2(8)+(101)(8))=440 m  \begin{align*} S_{10} &= \frac{n}{2} \Big( 2a + \left( n - 1 \right) d \Big) \\ &= \frac{10}{2} \Big( 2(8) + (10-1)(8) \Big) \\ &= 440 \textrm{ m} \; \blacksquare \end{align*}
(ib)
Distance run
Sn=n2(2a+(n1)d)=n2(2(8)+(n1)(8))=4n2+4n  \begin{align*} S_{n} &= \frac{n}{2} \Big( 2a + \left( n - 1 \right) d \Big) \\ &= \frac{n}{2} \Big( 2(8) + (n-1)(8) \Big) \\ &= 4 n^2 + 4 n \; \blacksquare \end{align*}
When the athlete runs at least 5{5} km,
4n2+4n50004n2+4n50000n34.86   or   n35.86 (NA)\begin{gather*} 4 n^2 + 4 n \geq 5000 \\ 4 n^2 + 4 n - 5000 \geq 0 \\ n\geq 34.86 \; \textrm{ or } \; n\leq -35.86 \textrm{ (NA)} \end{gather*}
Least number of stages =35  {= 35 \; \blacksquare}

(ii)

The distances form an GP with first term 8{8} and common ratio 2{2}
Sn=a(rn1)r1=8((2)n1)21=8(2n1) m  \begin{align*} S_{n} &= \frac{a\left(r^{n}-1\right)}{r-1} \\ &= \frac{8\Big( \left(2\right)^{n} - 1 \Big)}{2-1} \\ &= 8 \left( 2^n - 1 \right) \textrm{ m} \; \blacksquare \end{align*}
When the athlete runs exactly 10{10} km,
8(2n1)=100002n=1251n=ln1251ln2n=10.29\begin{align*} 8 \left( 2^n - 1 \right) &= 10000 \\ 2^n &= 1251 \\ n &= \frac{\ln 1251}{\ln 2} \\ n &= 10.29 \end{align*}
Hence he has completed 10{10} complete stages
S10=a(rn1)r1=8((2)101)21=8184\begin{align*} S_{10} &= \frac{a\left(r^{n}-1\right)}{r-1} \\ &= \frac{8\Big( \left(2\right)^{10} - 1 \Big)}{2-1} \\ &= 8184 \end{align*}
He will run 10,0008184=1816{10,000-8184=1816} meters in stage 11{11}
u11=arn1=8(2)111=8192\begin{align*} u_{11} &= ar^{n-1} \\ &= 8 \left( 2 \right)^{11-1} \\ &= 8192 \end{align*}
Since 1816{1816} is less than half of u11,{u_{11},} he is travelling away from O  {O \; \blacksquare}
Distance from O:1816 m  {O: 1816 \textrm{ m} \; \blacksquare}