2014 H2 Mathematics Paper 2 Question 8

Linear Correlation and Regression

Answers

(ai)
(aii)
(bi)
(A) r=0.947{r=-0.947}
(B) r=0.975{r=-0.975}
(bii)
P=clnm+d{P = c \ln m + d} is the better model as the product moment correlation coefficient is closer to 1,{-1, } indicating a stronger linear correlation
P=33,700lnm+196,000P = -33,700 \ln m + 196,000
(biii)
Price =$64,000{=\$64,000}

Full solutions

(ai)
(aii)
(bi)
(A) Using a GC, product moment correlation coefficient between m{m} and P:{P:}
r1=0.947 (3 sf)  r_1 = -0.947 \textrm{ (3 sf)} \; \blacksquare
(B) Product moment correlation coefficient between lnm{\ln m} and P:{P:}
r2=0.975 (3 sf)  r_2 = -0.975 \textrm{ (3 sf)} \; \blacksquare
(bii)
P=clnm+d{P = c \ln m + d} is the better model as the product moment correlation coefficient is closer to 1,{-1, } indicating a stronger linear correlation {\blacksquare}
Least square regression line of P{P} on lnm:{\ln m:}
P=33,660lnm+195,694P=33,700lnm+196,000 (3 sf)  \begin{align*} & P = -33,660 \ln m + 195,694 \\ & P = -33,700 \ln m + 196,000 \textrm{ (3 sf)} \; \blacksquare \end{align*}
(biii)
When m=50,{m=50,}
Estimated price=33,660ln50+195,694=$64,000 (3 sf)  \begin{align*} & \textrm{Estimated price} \\ &= -33,660 \ln 50 + 195,694 \\ &= \$64,000 \textrm{ (3 sf)} \; \blacksquare \end{align*}